Micro Fiche Scan

Name of device(s) tested:
AXDF

Test description:
AXDP V2 DREVR PROGR (5D

MAINDEC Number or Package Identifier (after SEP 1977):
CHODPAD

Fiche Document Part Number:
AH-FGE10A-MC

Fiche preparation date unknown, using copyright vear:
1984

Image resolution:
1-bit black&white, compressed for minimal file size

COPYRIGHT (C)y 1984 by dlilgliltlall

51

Lt
Qzx

IDENTIFICATION

PRODUCT NAME: AC-UO36A-MC

PRODUCT NAME: CHQDPAG XXDPV2 Drvr Progr Gd
PRODUCT DATE: 8 Oct 1984

MAINTAINER: Low End D agnostic Engineer'ng

The information in this document is subject to change without
not ce and should not be construed as a commitment by D gital
Eau pwent Corporation. Digital Equipment Corporation assumes

no responsibility for any errors that may appear in thi:s document,

No responsibility is assumed for the use or relisb’'l ty of
software on equ pment that s not supplied by Digital or “ts
affilinted compenies.

Copyr'ght (C): 1984 by Dig'tal Equipment Corporat on

“he following are trademarks of [Dig tal Equipment Corporat on:

D'g ta., PDP, UNIBUS, MASSBUS, DEC, DECUS, DECtape, DEC/X11

ks et e et ke bl et

SEQ 000

XXDP ve

Cl

Page 2

Driver Programmer's Guide

Manual Revision: 0.1

XXDF Version: 2.0

Mainta:ined by: MSD Disgnostic Engineering

Revis'on History:
Rev.sion Date

0.0 1'uuﬂ'84
0.1 B-Jct-B4

DAL
LSP

Description

Original Document
Reformat

5£Q 0002

Page 3
5£Q 0003
Table of Contents
------------- Page
1.0 Introduct on 4
2.0 Device Driver Layout 5
3.0 Device Driver Functions 11
4.0 Writing a Driver 15
5.0 Device Driver Characteristics 17
6.0 Glossr~y 19
7.0 Bibl shy 19

Rppendix: A - Driver Example
Appendix: B - Assembly and Linking Instructions

Driver Equates

¥

fFppendix: C

Append'x: D - Device Type Codes

1.¢

ol

Page 4

Introduct on

This document is intended as a guide to those who need
to understand and/or write device drivers for tne XXDP-
V¢ system. Section 1.0 below describes the bas ¢
differences between V1 and V2 drivers, Sect on 2.0
outines the physical layout of the driver. Section 3.0
describes the functions performed by drivers while

sect on 4.0 offers advice to those :ntending to
maintein or write a device driver themselves.

Throughout this document there are monl references to
the mnemonics of the file structure. These are listed
in the glossary for convenience. A desription of the
file structure may be found in the file structure
document listed in the biblography.

Differences between V1 ang V2 Drivers

One major purpose of XiDP« V2 is to simplify the
ma:ntenance of XXDP components., A facet of this

s mpl fication is to make drivers as uniform as possible.

To this end:

o) Functionality which seemed more file-oriented then
device-oriented (e.g9. file search) was migrated to
a front-end, which 1s now incorpora‘ed in o
version of UPD2 and other utilities.

b’ Read-only and Reed-write functionality was
recombined so that & single driver may be used
both by the Monitor and by utilities.

c¢) Some functional espects of individual drivers were
changed. For instance, most drivers will now
sJpport two units (previously a different copy
was needed for each unit).

d) The layout of all drivers was made as uniform as
possible.

e) D'sk organization has been made uniform (MFD
/ar‘ety #1‘ hass been retired).

€) Some functional aspects of the Utilities were
changed. UPDZ2 will no longer permit an Image
copy between devices with differing sizes, and
n.ll not copy the Monitor during a F'le copy.

£Q 0004

[T]

LAY

n

L)

1

Page 5

Compatibility

anp.tibilitI between V2 and V1 has been maintained,
with the following exceptions:

1) The V1 DL and DM disk layout did not allow
for & 32k Monitor. If the V2 Monitor ‘s ‘nstalled
on 8 V1l medium, the first file (or two) after the
mon:tor area will be corrupted.

2) The MFD variety ¢1 has been retired for the DB,
DD, DU end DY drivers. V2 drivers may be used to
read or write V1 media. V] drivers may be used
to read V2 media, but not to write. (Except in
the case: V1 MS drivers will not read V2 MS tapes.)

3) V2 media will have the octal constant 1002 at
octal displacement 14 (the old MFD2 pointer) in
the MFD. V1 media will have some other vealue.
The MFD is not currently read by most drivers, so
this fact is not used.

4) The V1 MM and MS tape layouts each had two Monitors
st the tape bgginning. selected according to what
dev.ce wes being booted. The V2 layouts have only
one Monitor as the first file on the tape.

Jevice Driver Layout

This section describes the lexical structure of XXDP
Version 2 device drivers. The requisite components are
outlined below with descr.ptions as to their functions
and usage. Definitions of terms relatina to file
structure meay be found in (RC-S866A-M0) CHGF SAQ XXDP.
File Structure Document.

Driver Revision History

This section contains a brief history of attributed
source cooe rev s.ons, 8s s standard for DEC software.

———— A ———— 1 —— & e————————————

5£Q 0005

n
[,

2.2.2

Gl

Page 6

Symbolic Equates
Device-Independent Equates

This section contains definitions for data structure
offsets and other equates which are more or less common
to 8.l drivers,

1) DIRBLK Offsets

These equates describe the DIRBLK structure in
the driver, discussed below. The DIRBLK contains a
description of the (disk) layout.

2) DDB Equates

These equates describe the '‘Device Descriptor
Block' (DDB). & data structure which is found in
the utilities, and 8 subset of which is found in
the Monitor. The DDB provides the driver’'s data
interface. The driver’'s Parameter Table will
overlay or be copied to the DDB.

3) Device Command Codes
These equates are the command codes. issued by o
utility or the monitor, to which the driver
responds. Some command codes, e.qg. WRITES, are
used by all drivers. Others may be specific to

device type (e.?. bad-blocking) or to the device
itself (e.g.RFSIFN- reformat RX02 single density).

4) Parameter Table Equates
When the driver is loadedby a Util;tsé its

parameter table is copied into the D These
equates are thus actually DDB offsets.

5. Device Returned Status Byte
These equates describe the meaning of the bits in
the sbove-mentioned DVSB byte. They concern disk
density and tape drive status.
Device-Dependent Equates
These are equates particular to the device and driver code.
1) Progrem Equates

These equates ere typically mnemonics (e.g. LF
or CR) used for convenience in the code.

¢) Device Equates

These equates describe internal device codes,
status words, commands, and packet formats.

£Q 0006

2.3
2.3.1

11

Page 7

Data Structures
Device Parameter Table

This date structure begins the driver’'s actual code,.
When the the Monitor is CREATED by the UPDATE wutil 'ty
the driver is appended to the end of the monitor and
this table overlays the Monitor's DDB. When the driver
1S loaded by a utility, this table is copied into the
utility's DDB, eddresses being reloceted appropr ately.
From this time on, the table is referenced largely
through this DDB copy: the driver s copy is used only by
the driver's INIT routine in anticipation of the next
load. All driver routines assume that RS points to the
command register entry in the NDB.

(Note: in order to save space, some of the parameters
have been given INITIAL values and functions which are
not related to their functions during execution.)

A Parameter Table Example is:

PARAM: DISPAT ;: DISPATCH ROUTINE
LWORD "DZ ;ORIVER NAME
.BYTE 88SuUPs ;DEVICE CODE
.BYTE 44 ;RETURNED STATUS (INITIAL DEV%ng)
.WORD BCODE ;BOOT CODE OFFSEY
UNIT: .BYTE O sUNIT @ (INITIAL REV &)
ERRB : BYTE 0 ;ERROR STATUS (INITIAL PATCH &)
CMDREG: 174400 ; COMMAND REGISTER ADDR
WCOUNT: 0O ; WORD COUNT
BUSADR: © :BUS ADDRESS
BLOCK: O :BLOCK NUMBER
CoMD: O : COMMAND
DIRPTR: DIRBLK ;POINTS TO 1ST DIR BLOCK.
ASNAME : O ;FOR MONITOR COMPATIBILITY

PAREND :

1) Dispatch Routine Address
Th's entry is the address of the dispatch
routine, which determines which driver routines

to invoke. All driver services are provided
through this entry,

2) Dr'ver Name

Th's entry is the device's two byte mnemonic name.

2@ 0007

11

Page 8
3) Device Code
This static byte is used to indicate that the

device has special features of interest to
utilities. Current flags are:

BBSUP$ - Device provides bad block support.
NODIR$ - Not a directory device

TAPEDS - Tape device

REFON$ - Supports single/double density reformat.

MULUNS Driver supports 2 units/driver
NORENS - Device does not support file rename.
FLOADS - Device may have floating address.

4) Device Status
This byte is returned by some drivers in response
to inquiries concerning disk density or tape
status. Current flags are:

DDODEN$ - Disk is double density

BOTTP$ - Tape is st physical bot
TMKTPS - Tape is at tape mark
EOTTPS - Tepe is at ohysicel eot

(The INITIAL value of this Lyte communicates a device
type code to the Mon teor .mmediately after the
driver is loaded. See sprendix D.)

5) Boot Code (ffset

“his entry contains the displacement to the boot
code, i.e. to the end of driver code. This is
used by the Monitor and does not further concern
the driver itself.

6) UNIT

This byte entry communicates the device unit ¢
to the driver. This is commonly addressed as
XON(RS).

(The INITIAL value of this byte communicates the
version number of the driver.)

7) ERRE

This byte entry is used by the driver to

commun cate errors and (sometimes) attention
conditions. It is tested immediately prior to
agriver exit (as XER(RS)).

(The INITIAL value of this byte communicates the
patch number of this driver.

8) CMDREG

Th's is the address of the primary device command
register. It is the focus of the DDB and is used
by the dr ver to access all device registers.

SEQ 0008

2.3.2

2.3.3

2.3.4

ul

Page 9

9) WCOUNT, BUSADR, BLOCK

These entries are used to communicate to the
driver, the count, address, and block number of
a transfer command.

10) COMD

This entry contains the coded command to be
performed by the driver. This code is
interpreted in the driver’s dispatch routine,

11) DIRPTR

This entry points to the driver data structure
DIRBLK, a table which describes the physical

layout of a disk. This pointer is the onl

exception to the rule that local entries in this
table (as opposed to their conies in the DDB)

are not used. The driver’'s INIT routine may toggle
this pointer for some "two-unit” drivers to point to
an alternate DIRBLK structure to be active on the
next load. This feature permits one driver to be used
with two units with differing densities, etc.

DIRBLK

This data structure communicates particulars of the
device's physical layout. Its first several entries
mirror the structure of a variety #2 MFD, which is now
used for non-bad-blocking devices as well. Note thet
for non-bad-blocking devices, the dats contained in
DIRBLK is constant and the MFD need never be actuall
read. For some drivers which support two units, DIRBLK
will be replicated, and DIRPTR will be toggled back and
forth by the driver's INIT routine.

Local datae

This section conteains deta structures used internally by
the driver to store state information, construct packets,
etc. Some unit-dependent local deta may be sppended to
DIRBLK to take advantage of DIRBLK switching for two-unit
drivers.

Error Messages

Th's section contains the error messages printed by the
driver. The utilities may append information to such
messages, e.g. if the driver prints “RD ERR", the utility
will note the error through the error byte XER(RS), and
may append, for example, “IN INPUT DIRECTORY",

e — e —————— —

SEQ 0009

2.4.2

2.4.3

2.4.4

(1l

Page 'V

Executable Code
DISPATCH Routine

The dispatch routine receives control from the util 'ty or
monitor, examines the command code in the DDB, and gives
control to subordinate routines. Dispatch may, in
addition, perform code sequences common to its sub-
ordinates or indeed perform some simple commands. Just
prior to exit, the dispatch routine tests the error byte
XER(RS) so that the calling utility may make an immediate
branch on error. At present, some dispatches are "test
and call” and some table driven. In drivers with more
than 4 such tests, a table driven approach may save
space.

INIT Routine

The init routine receives control from dispatch. Its
primary function is to perform any physical initial-
1zation and to set local DIRBLK variables to reflect unit
characteristics. It i1s assumed to have been called
immediately after the driver is loaded. Init may also
perform auxillary functions, such as determining device

density.

DRIVER Routine

The driver routine receives control from dispatch., It
commonly handles 1/0 transfers. In many cases, the code
in this routine is largely unchanged from that in V1.

Auxillary Routines
These routines are called by DISPATCH, INIT and JRIVER.

SEQ 0010

3.0
3.1

L1

Page 11

Device Drivers Funct ons

All Drivers

There is a minimal set of funct ons which all drivers are
expected to perform:

INITS

This function is invoked once per device-unit,

either after the Monitor has been loaded or immediately
after a utility 'loads’ a driver. Note that if o

gt;lgty finds the requested driver to be already present,
it will not load a fresh copK. Before INITS is invoked,
parameter teble information has been copied (or in the
case of the Monitor, overlayed) on to the DDB; in
particular DIRPTR has been converted from relative to
sbsolute address (but only on a fresh load).

Tasks to be performed at this time include device
initialization (e.g. DU performs an initislization
sequence at this time when the value of a local varisble
signifies that it is a fresh 'load’') and inti;alization
of local variables. Disk drivers which support bad-
block ing use this occasion to read the disk MFD and

set DIRBLK variables accordingly. Some drivers which
support two units with d?fferun? characteristics (e.q.
density) will togﬁle the (local) pointer DIRPTR at this
time so that on the next ‘load’', a different DIRBLK will

be used.

You will see that, in those drivers which have s GTMFD1
routine to read the MFD, a DIRBLK.fla? XXMFID is checked
before any disk read is done. This f ag is ra;sed b
the driver loading routine in the utility when & ZER
directive is in progress - in order to avoid reading
junk from a disk which is about to be cleared. The
IRBLK structure is updated by the utility during the
ZERD execution.

RES$FN

This function is invoked by the Monitor to read some_
blocks from the Monitor image, presumably after possible
corrupt:ion,

At this time the code relocates the requested block
number by the starting Monitor block number. The code
may assume that this entry in DIRBLK is either a
constant or has been updated during INIT$ processing.

SEQ 0011

M1

Page 12

This function is used by all drivers except LP:.

It is invoked by the Monitor or the utility to read

8 block or series of blocks from the device. The word
count, buffer address and starting block number (for
direct access devices) are found in the DCB.

It is the driver's function to convert the word count
and block numbers if necessary, to initiete the trensfer,
and to wait until successful completion. If an error is
detected, the driver may try to effect recovery (e.g.
several disk drivers now have ECC correction routines).
If recovery is impossible, failure is communicated by
setting the XER byte in the DDB to a non-zero value.

WRITES

This function is used by all drivers. All comments
concerning READS above are applicable here.

SEQ 0012

3.2

N1

Page 13

Disk Drivers

Disk devices sre all directory structured. This is
signalled to the utility by having a positive first entry
in the DIRBLK teble. A disk driver may have functions in
addition to those above:

RED$FN

This function requests the read of an absolute
cylinder/track/sector from a bad-blocking device. It
1S invoked by the ZERO command execution in UPDZ2.
UPD2 places the c¥1inder. track and sector addresses
of the bad-block file (determined from DIRBLK) into
the 00B and issues the call.

CMP$FN

The format of the bad-block file is a list of
cylinder/track/sectors. The ZERO routine in UPD2 issues
a CMPS$FN to convert these to block numbers, which it
uses to set the appropriate bit-maps.

DENSFN

%he ZERQO routine in UPDZ2 needs to know the disk density
to find the correct location of the bad-block file,

The driver returns a flag in the DDB status byte DVSB.

0 = single density
1 = double density

RFS$FN,RFDSFN

The DY driver performs hardware re-formatting of a disk
to s'ngle or oouble density (as communicated to UPDZ2
through the ZERO command).

SEQ 00:3

3.3

B2

Page 14
Teape Drivers

Drivers for tage devices (communicated via the device
code byte in the DDB and by & negative first word in
DIRBLK) prov'de a veriety of functions not needed for
disk devices. Tapes are not directory devices - every
file is preceded by a header which contains the file name.
The logical end of tape is o double EOF. In addition to
those funct ons listed as common to all drivers above:

PRESTP

- " ==

This function is invoked to set up the tape controller
for subsequent commands.

REWSTP

This function is called to rewind the tape.
SPRsTP

This funct ' on "s called to backspace the tape.

WHDS TP

i;:;-;unctfon 1S called to write & 7 word header.
RHDSTP

;;E;.;unct?on 1S called to read a header.

SEFSTP

This function is invoked to skip to an EOF, i.e. to
skip the rems nder of a file.

This function 's called to write sn EOF on tape.

SET$TP

-- - - -

This function is called to skip to the logicsl end
of tepe, “.e. after all files.

STASTP

This function is invoked to return the tape status

(st BOT,TMK,physicel EOQT) through the device status
byte in the DDB. The two existing tepe drivers, MM
end MS spprosch this differentl¥. MM backspaces the
tepe and then forwerd spaces, f BOT was detected
during the backspace, this is returned as status.
JUtherwise the status detected dur 'ng the forward space
‘s returned.The MS driver interrogates the controller
in real t'me.

5EQ 0014

£a

-

Ce

Page 15

Wr' 't ' ng & Driver

The best approach to writing a driver is to model it on
ex'st'ng ones. The drivers that presently exsist provide
8 wide var;ety from which to choose, and are br'effy
character:zed along several dimensions at the end of this
section. Some points to note:

1)

2)

3)
4)

Much of the driver preamble is device-independent and
mey be copied wholesale. Look at the preamble of UPDZ2
to determine the symbolic command codes etc. with
which the utilities andg drivers commun cate.

The device-dependent components of the preesmble
follow informal conventions, e.g. control reg ster
names are often similar from device to device. You
moy be able to copy this, with minor changes, from
some driver with a similar communications structure,

The parameter tables of all drivers are quite similer.

The DIRBLK specifies the physical layout of a disk
device. Be careful how you az out 8 disk structure -
do not lock yourself into s structure which cannot be
eas:ly expended to meet similar but larg:; devices,
For example, you might want to put the itor im
towards the beginning of the disk, before the UFD and
Bitmaps, so that the bootstrap routine doesn't have

to contend with these areas as they change from device
10 dev:ce.

Ar example of 8 good structure might be:

Block Purpose

¢] Secondary bootstrap

b MFD1

3 Start of Monitor .mage

7S. First UFD block

I5. « N First bit map

35, « N - M ¢ of blocks to preallocsate

Remember that, even though they are linked, UfD and
b't map space are allocated contiguously by UPD2 at
dev'ce ZERQing. It is, in fact, this cont.guity which
results in the possibility that the actual pasrameters
may differ among bad-block ing devices.

The DDB error byte ERR(RS) is used to communicate
failure. The driver must test this byte immediately
before ex'ting. Note thst the polarity of this device
‘s used to commun cate different flavors of fa'lure:
e.q9. -1 often means 'devce full'.

€EQ 0015

6)

8)

9)
10)

De

Page 16

If you plen to have your driver support 2 disparate
devices at the same time (e.g. bad-block ing devices
sre disparate because the actual location of some
things may change. There :s a limit to this: the
boot routine may assume & constant locetion for the
Honitor image), you may want to toggle between two
DIRBLI('s. Be careful, in this case, to remember that
the parameter table uctuallx overlays the DDB when
the driver is linked with the Monitor; toggle before
any changes are made to DIRBLK.

The DRIVER routine_in many drivers disambiguates some
of the commands. This is due to historical reasons
and commonality of some code.

Oriver code must be location-independent. In part-
icular, this means that if addresses of local data
are manipulated. they must be calculated dynamically
rather than by the linker, E.g.

MOV ¢TABLE,RO ; will not get the address of
: TABLE
but
MOV PC, RO
RDD #TABLE-.,RO ; will work

All code must be processor independant.

The disk lasyout (reflected in DIRBLK) of some bad-
block ing devices depends on the medium density. When
a driver is 'loaded’ as 8 result of a ZERQ command,
the MFD refreshed indicator in the DIRBLK s set by
UPD2 prior to invoking the INIT function. This is
tested in the driver's GTMFD]l routine to b;gass an
MFD read (the MFD may be aunk). The UPD2 ZERQ
command will issue a DENSFN to the driver to
determine the disk density, and will compute the

bed block file and bad-block dependent attributes
(first UFD, bitmap. and Monitor) accordingly. It will
not, however, set up the remaining density-dependent
DIRBLK entries: this should be done by the driver’'s
INIT cgde with consideration that the MFD might not
be read.

The MFD for all devices is written by UPD2 during a
ZERD command, and, for bad-blocking devices, must be
referenced (becsuse it contains variable information)
b¥ the driver during an INIT function to update the
DIRELK, The veriables to be updated sre starting UFD,
Mon tor, and bitmap block numbers. Except for this
reference, the driver need not concern itself with
the MFD variety or structure.

.%Q 0016

EC

Page 17

5.0 Dev'ce Driver Characteristics

0

oC

DL

DM

- RJP04,5,6

Type i
Bed-blocking
Error-recovery
Communications
DIRBLX

Two units/driver
0:spatch

- TUSH

Type .
B8ed-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

- RLO1,02

Type .
Bad-block tNQ
frror-recovery
Communications
DIRBLY¥

Two units/dr;ver
Dispatch

- RK06,7

Type)
Bed-blocking
Error-recovery
Communications
DIRBLK

Tgo units/gr;ver
Dispatch

- RM02,03

Type)
Bad-blocking
Error-recovery
Communications
DIRBLV

Two units/gr’ ver
Dispatch

- =

§ L | L3 [} [} " ' L} (] L} [) (]

Disk

No

ECC correction,retry
Device registers
Constant

Yes

Table

a;sk (directory structured tape)

Retry
Packet
Constant
Yes
Table

Disk

Yes

Retry

Device Registers

Veriable according to bad-blocking
and dens:ty.

Yes

Table

Disk

Tes]

ECC correction,retry

Device Registers .
¥aruable according to bad-blocking
es

Table

Disk

Yes

ECC correction,retry

Device Registers

¥ariable according to bad-blocking
es

Teble

SEQ 0017

Page 18
£Q 0018

DU UDA SQ,RD/RX

Type i D sk

Bad-blocking - Transparent to driver

Error-recovery - !

Communications - MSCP

DIRBLK - Variable according to drive capacity

Two units/driver - Yes

Dispatch - Test and call
DY - RX02,01 (does not boot RX01)

Type Disk

Bed-blocking No

Error-recovery Retry

Communications Device Registers

' [B [}) L]

DIRBLK Variable according to RX01/02
Two un ' ts/driver - Yes
Dispatch Table

LP - Line printer

Type - Line printer

Bad-block ing - Huh?

Error-recovery - !

Communications Device registers

DIRBLK - Constent

Two units/driver - No

Dispatch - Test and ceall
"™ . TMO2

Type , Tepe

Bad-block ing

Error-recovery Retry

Communications Device registers

9 [S]]]

DIRBLK Constant -.
Two units/driver Yes
Dispatch Table

MS 1504/7511
Type Tape
Bad-blocking -
Error recovery - Retry
Lommun icat ons Packet
DIRBLK - Constant -]

Two units/dr'ver fes
D spatch Table

G2

rege 19 5EQ 0019
2

6.0 GLOSSARY

IRG - Tnterrecord gap. The gap that is written
between records on magtape.

MFD - Master File Directory

RAD-50 - RADIX-50, A method of encoding 3 ASC11
characters into one 16 bit word,

UFD - User File Directory.
1) (o - User Identification code.

7.0 Bibliogrephy

XXDP./SUPR USE MAN, CHQUS??, AC-F348F-MC, current
XXDP. FILE STRUCT DOC, CHQFSAO, AC-5866A-MO, April, 1981

no

Appedicies

Appendix A Driver and Boot Exomple

The following is an example of o uorklng driver (DB:), ed ted
sl-ghtlly to explicate structure.

- .- eeewereme .-

.NLIST CND

- - - - e mE .- . m E T W WS e M meemewm wewow o= ow o

.TI'LE RUPO4,5,6 - XXDP. V2 DRIVER
SBTTL ORIVER REVISION HISTORY

[I R LT T iy

1.0 31-JUL-78
1.1 17-NOV-78

2.0 11-AUG-80

21-FEB-84
06-MAR-84
18 MAR-84
25-APR-84

.NLIST ME,CND

.NLIST MC
.LIST MEB

o NS wewEmEeweae wm o= - - - - m e E e e mw e - m - -

INITIAL ISSUE
MAKE COMPATABLE WITH BIG DRVCOM

XXDP+ V1.1 COMPATIBLE

REMOVED READ-ONLY CODE

ADDED XER(RS) AS RESULT STATUS
ADDED INIT ROUTINE

REMOVED CLEAR MAPS ROUTINE

CHANGE FOR V2, INCLUDING ECC CORRECT
TWO UNITS/DRIVER - GOT RID OF GTMFD1
TABLE DRIVEN DISPATCH

INITIALIZE RETURNED STATUS BYTE

- e e- - - - m e e - wmeem - e o - m -

SBTTL DEVICE - INDEPENDENT EQUATES

- - P R B

XDIR =
XDIRN =
xXMP =
XMPN =
AMFD1 s
XVERS =
AMABK =
RSBK =z
ITLVE =
BOTEBK =
MNBK =
MFID -

- - - -—-- - - -

R I T I T T T o

M G M R R m R B S P T R T W W W T W W W W MW W O W SR e ko ow o e

:157 DIR BLOCK.

:# OF DIR BLOCKS.

: 1MAP BLOCK 3%,

;¢ OF MAP BLOCKS.

;MFD1 BLOCK ¢.

; AXDP_VERSION # (1002 = VERSION 2)
;MAX BLOCKS WORD.

;» OF BLOCKS TO RESERVE.

; INTERLEAVE FACTOR.

:B00T BLOCK,

;MONITOR CORE IMAGE BLOCK.
:MFD REFRESHED INDICATOR.

——— —— — v . S——- S————— .

EQ 0020

SEQ 0021

- - . - - - - - - o om o - - - - - - - - - —-- -

. "DEVICE DESCRIPTER BLOCK (DDB) EQUATES
© DB OFFSETS FOR R/W DRIVER
DOB OFFSETS FOR MONITOR ARE A SUBSET

P e m - - e B e W e e EmE e W e @ R W e e W T e R M T e o W e e e e e R A L

XREW = -50 INDEX TO INHIBIT REWIND INDCATOR
XWCTR z -46 ;INDEX TO WRITE COUNTER

XWILD = .44 : INDEX TO WILDCARD INDICATOR
XFLCNT = -42 ; INDEX TO FILE COUNT

XSVMAP = -40 :

XSVBLK : -3 H

ASVDAT = -34 :

XBKLGT = -32 :

XLSTBK = -30 :

XBUF = -26 H

XSVCNT = -24 :

XSVNAM = 22 :

XSVEXT = -16 H

X1STBK = -14 H

xSV = -12 ; INDEX TO SERVICE ROUTINE (DRIVER)
XDN = -2 DRIVE NUMBER INDEX

XER = 1 ;sRESULT STATUS

XCM = 0 ;INDEX TO COMMAND REGISTER

XWC = 2 ; INDEX TO WORD COUNT

XBA = 4 ; INDEX TO BUS ADDRESS

x0T - 6 ;s INDEX TO BLOCK NUMBER OR TAPE SKIP &
XCO = 10 ; INDEX T0 COMMAND

XDR = 12 ;INDEX TO 1ST DIR BLOCK POINTER
XXNAM = 14 ;INDEX TO ASCII NAME IN 0ODB

XBC = 16 ; INDEX TO REQUESTED BLOCK COUNT
XNB = 20 ;INDEX TO LAST BLOCK & ALLOCATED
XCKSUM = 22 ; CHECKSUM CALCULATION IN SEARCH
SvC = XSV :ALTERNATE NAME

- - . - - - I A I R R A A I I I I O R]

- e - e e e e M M o e T R W T R e M M T W e R 4 m P e m M Em e o om oW omNEeE oW W

INITS =0 ; INITIALIZE DEVICE AND BRING ON LINE
READS - 1 : READ

WRITES = 2 . WRITE

RESSFN = 3 : RESTORE FUNCTION FOR MONITOR

0IS = SVC : DISPATCH TABLE

- - - - .- - R R i T T D I I R I R L

: CODE BYTE
HULUN$ = 100 ; DRIVER PERMITS MULTIPLE DEVICES

.PAGE

Je

.SBTTL DEVICE-DEPENDENT EQUATES

RPWC
RPBA
RPDA
RPCS2
RPER]
RPOF
RPDC
RPECI
R2EC?2

RJREAD
RJWRITE
DONE
ERROR

1

61

200
100000

WORC COUNT REGISTER

BUS ADDRESS REGISTER

DESIRED SECTOR/TRACK REGISTER
CONTROL STATUS REGISTER 2
ERROR REGISTER 1

OFFSETT REGISTER

DESIRED CYLINDER REGISTER

ECC POSITION

ECC PATTERN

RZAD COMMAND
WRITE COMMAND

- - —— A ——

SEQ 0022

.PAGE
SE
.SBTTL XXDP DEVICE DRIVER PARAMETER TABLE 9 0023

DEVICE-DRIVER FARAMETERS
THESE PARAMETERS ARE JSED IN COMMUNICATION WITH THE UTILITY

; PROGRAM
PARAM: DISPAT ; DISPATCH ROUTINE
.WORD "DB ;DRIVER NAME

.BYTE MULUN¢ ;DEVICE CODE

BYTE 11 ;RETURNED DEVICE STATUS (INT DEVICE TYPE)
.WORD BCODE ;B00T CODE OFFSET
UNIT: .BYTE 'A ;UNIT # (INTIAL REV ¢ A)
ERRB: .BYTE "1 {ERROR STATUS (INTIAL PATCH # 1)
CMDREG: 176700 ;COMMAND REGISTER ADDR
WCOUNT: O ;WORD COUNT
BUSADR: 0 ;BUS ADDRESS
BLOCK: O :BLOCK NUMBER
COMD: 0 ; COMMAND
DIRPTR: DIRBLK ;POINTS TO 1ST DIR BLOCK.
ASNAM: 0 ;FOR MONITOR COMPATIBILITY

PAREND:

- - e —-—

.PAGE
.SBTTL DIRBLK TABLE £Q 0024

e R R A EmE e R e e GaR R .- e SR E SR G R E e e EE e e EE e w . &eew =ee @ weeew e w

- e e w e e e e R .S e ®®e S-S e e e e W EEEE MR 4 ow B eE W eewmeoe o= oa

DIRBLK: 3 i 15T UFD BLOCK ADDR
170. ;NUMBER OF UFD BLOCKS
173. ;1ST BIT MAP BLOCK ADDR
50. ;NUMBER OF MAP BLOCKS
1 ;MFD1 BLOCK ADDR
1002 : VERSION 2 FLAG (NOT UPDATED)
48000. ;MAX NUMBER OF BLOCKS ON DEVICE
255. :# OF BLOCKS TO PREALLOCATE AT ZERO
1 ; INTERLEAVE FACTOR
0 ;8007 BLOCK #
MONBLK: 223. :MONITOR CORE IMAGE BLOCK #
0 ;MFD REFRESHED FLAG. 0=NO, NON 0=YES

.SBTTL LOCAL DATA

- e e = oam .- - e e MR B e S LR G EEeEE T e R R W e EeE e EwEeE ==

e -- - wm EmE - weEmEm--e---- = = - e w e m e e R EEE® o m e AR RN W R W RSN R AW

ECCPAT: _WORD 0,0 ; STORAGE FOR ECC CORRECTION

.SBTTL ERROR MESSAGES

MUTERR: .ASCIZ <40><40>'? WT ERR'
MRDERR: .ASCIZ <40><40>’'? RD ERR'
ILLERR: .gagﬁz <40><40>'? JLLEGAL CMND ERR’

M2

.PAGE

.SBTTL MAIN DISPATCH ROUTINE
R L R LT Y ST T Lt

. DISPATCH ROUTINE FOR ORIVER
THIS ROUTINE RECEIVES CONTROL FROM A UTILITY
OR DRVCOM. IT EXAMINES THE COMMAND CODE IN

XCO(RS) IN THE DDB, AND CALLS THE APPROPRIATE
LOCAL FUNCTION.

INPUT
QUTPUT

XCO(RS)

" CALLS APPROPRIATE INTERNAL FUNCTION.
TESTS ERROR BYTE BEFORE RETURN
nesxsreaaoggnnseo:

AL IR LS 2 22222 A 33 2 2 22 A R e i i 2 i R 22

DISPAT: MOV RO, -(SP) : SAVE
MOV R1,-(SP)
MOV R3,-(SP)
MOV R4, -(SP)

@3 B8 Bs B4 We VY 02 WF B Ge $s @ We

MOV PC,.R1 ; TRUE ADDRESS
SuB #..R1 ;DIFFERENCE BETWEEN TRUE &
: APPARENT
MOV #TABLE-2,RO ;00 A TABLE SEARCH
ADD R1,RO ;GET REAL ADDRESS
10¢: 1ST (RO). ;70O NEXT FUNCTION
157 (RO) ;END OF TABLE ?
BMI 110¢ :MI = YES
CMHP (RO).+,XCO(RS) ;IS IT OUR FUNCTION ?
BNE 104 ;NE = NO
RDD (RO),R1 ELSE GET REAL ADDRESS
JSR PC,(R1) ;AND DO IT
BR 2404 :AND LEAVE
; HERE IF ILLEGAL FUNCTION
110¢: $ABORT #ILLERR ;NOT LEGAL COMMAND
MOVB 1,XER(RS) ; SIGNAL
240 : MOV (SP)« R4 :RESTORE
MOV (SP). ,R3
MOV (SP). . Re
MOV (SP).,R1
MOV (SP)+,RO o
1578 XER(RS) :Set error indicator
RTS PC
;FUNCTION TABLE - FIRST ELEMENT IS FUNCTION, SECOND IS ROUTINE
TABLE: .WORD INITS$,INIT ;INITIALIZE
LHORD RESS$FN,RESTOR ;MONITOR RESTORE
.WORD READS$,DRIVER :BLOCK READ
.WORD WRITES$,DRIVER ;BLOCK WRITE

.WORD -1 ;END OF TABLE

~EQ 0025

NE
PAGE
SEQ 0026

.SBTTIL. MAIN ROUTINE: INIT
R L T L T T Sttty

;ROUTINE TO INITIALIZE THE DEVICE

:INPUTS ;
: NONE

:OUTPUTS:
:ROUTINES CALLED:
:REGISTERS CHANGED: NONE

R A 22 22 2 a2 I et s R R s 23 22222223324

INIT: CLRB XER(RS) ; ASSUME GOOD RESULT
RTS PC

B3

.PAGE
.SBTYTL MAIN ROUTINE: RESTORE

1000888000808 0008 0820030ttt bRtttk t Rtk N RS SRS EEEtEk bbbt R

; ROUTINE TO READ PART OF THE MONITOR CORE IMAGE

: CALL AS FOLLOWS:
PUT BLOCK NUMBER RELATIVE TO MONITOR IN XDT(RS)

PUT NUMBER OF WORDS TO READ IN XWC(RS)
PUT ADDRESS TO READ INTO IN XBA(RS)
PUT REWSSFN IN XCO(RS)

JSR PC,80IS(RS)

GOOD RETURN:DATA READ

ERROR RETURN: DIS TESTS XER(RS) BEFORE RETURN
ROUTINES CALLED: DIS(RS)

REGISTERS CHANGED: NONE

HERR R A A I 2 A 2 A A 2 2 22 2 R At R A R R A R R SRR R NSRRI 2201

RESTOR: ADD MONBLK,XDT(RS3) ;MAKE BLK NUMBER RELATIVE TQ O
MOV O@READS,XCO(R5) ;00 A READ FUNCTION
g?g :E.BDIS(RS) ;LET DRIVER DO I7

H
;
H
:
H
H
H
H
H
H
H
:
H
H

. sl s

SEQ 0027

C3
PAGE
.SBTTL MAIN ROUTINE: DRIVER

10000800000 R RN RERR USSR R OSSR e R bR bbb b bbb kbR R R bRk A

; READ-WRITE DRIVER FOR THE RUP0O4

: CALLED FROM DISPATCH
; PERFORMS READS AND WRITE$S FUNCTIONS

: GOOD RETURN:
; TRANSFER EFFECTED, XER(RS) CLEARED
;: ERROR RETURN:

: MESSAGE TYPED., XER(RS) NONZERO
: REGISTERS CHANGED:
: RO,RI.R2,R3,.R4

$--000 800N ERNNRERRRRR R NN RS R RN R R RN RN bbbk kbR kN bbb kbbb a

DRIVER:

CLRB XER(RS) ;ASSUME SUCCESSFUL RESULT
MOV ¢11..R4 :# OF TIMES TO RETRY ON ERRORS
RPDRV1: DEC R4 :SHOULD WE CONTINUE?
8LE 33 :NO,S0 REPORT ERROR
MOV (R5),R3 ;:DEVICE ADR
MOV XDN(RS),RO :GET UNIT NUMBER
8IC #177400,R0 ;STRIP OFF ANY JUNK
MoV RO ,RPCS2(RY) :LOAD RESULT INTC RPCS2
MOV €10000,RPOF(R3) ;SET 16 BIT FORMAT IN RFOF REG
MOV #23,(R3) ;00 A FACK ACK TQ SET vv BIT
MOV XWC(RS) ,RPUC(RS) ;WORD COUNT
NEG RPUC(R3) ;TWO'S COMPLEMENT OF WC
MOV XBA(RS5),RPBA(R3) ;BUS ADR
MoV XDT(RS),R1 ;BLOC NUMBER
gog 352..92 ;22 SECTORS PER TRACK
L
NH gug gf.“l ;0IVIDE BY SECTOR SIZE
L
INC RO sUP TRACK COUNT
BR 1
cs: ADD R2.R1 ;WENT T00 FAR
EOE g%.-(sp) :PUT SECTOR & ON STACK
L
MoV £19. ,R2 :19 TRACKS PER CYLINDER
1s: SuB R2,RO :DIVIDE BY TRACKS PER CYL
BLO 43 :TO GET TRACK AND CYL #
INC Rl ;UP CYL COUNT IN R}
BR 3 ;RO IS HOLDING TRACK ¢
44: ADD R2,R0 ;sMAKE UP FOR GOING TOO FAR
SWAE RO :MOVE TRACK ¢ Y0 LEFT
BIS (SP).,RO ;OR IN RIGHT SIDE (SECTOR)
MOV RO,RPDA(RZ) ;70 DSK ADR REG
MOV R1,RPDC(RZ) ;70 DSK CYL ADR REG
[y READS ,XCO(RS) :1S A READ ?
BNE 104 :NE = NO, MUST BE A WRITE
MOV #RJRERD, (R3) ;ELSE START 1IT7

1 70¢
ics: M/ ARJWRIT,(RZ; ;START WRITE

—

SEQ 0028

32%:
35¢:

33s:

26%:
20%:

817
BEQ
B8PL
BIY
BEQ
BIT

JSR
MOV
15718

MoV
MOV
1578
8PL
BIT
BEQ

DECB

8
.FRCTYP
R

8
FRCTYP
RTS

8DONE 'ERROR, (R3)

30¢
204

2100000,RPER]L(R3)

324
#100,RPERI(R3)
324

PC,ECCCOR
040,RPCS2(R3)
(R3)

318

20

(R3),RO

840 ,RPCS2(R3)
(R3)

354

#40000,R0
RPDRV1

XER(RS)
XC?(RS).#READS

36
SMUTERR
20$
SMRDERR
PC

:DONE QR ERRQR?

;NEITHER

; OONE

;:WAS A DATA CHECK FRROR?
;EQ = NO

;YES, IS IT CORRECTABLE?
;:NE = NO

ELSE CORRECT 11
:CLEAR ERROR CONDITION
‘WAIT TILL DONE

;AND LEAVE

:SAVE ERROR INFORMATION
;CONTROLLER CLEAR
:DONE?

;WAS IT HARD ERROR?

: INDICATE ERROR
;WAS ERROR ON READ?

: YES

;PRINT UWRITE ERROR
;RETURN T0O CALLER

:PRINT READ ERRQOR

~£Q 0029

.PAGE

.SBTTL ROUTINE ECCCOR

RS RS A2 R A AR R R R R R R R A R R R A PRI TR TR

: CORRECT A SOFT ECC ERRQR

. SEQUENCE OF UP 10 11 BITS
: CALLED BY DRIVER

E3

(ALGORITHM ADAPTED FROM THAT IN CZR6PD)
USES HARDWARE ERROR BURST PATTERN TO CORRECT A FAULTY

HERE LA A2 A A 2 2 S R 2 2 A3 24 2 A R 2 2 2 2 R R R R A R R R R R R 222222222

: GOOD RETURN:
; DATA CORRECTED IN BUFFER
; REGISTERS CHANGED:
: RO,.R1.Ra
ECCCOR: MOV RPEC2(R3),ECCPAT
CLR ECCPAT.2
MOV R3,-(SP)
MOV RPECI(R3),.R1
MOV XBA(RS),R3
MOV XWC(RS),R4
ASL R4
MOV R3,-(SP)
ADD R4,(SP)
DEC R1
MOV R1,RO
ASR R1
ASR R1
ASR R1
BIC ¢1,R1
CMP R1,.R4
BHIS 10¢
ADD R1,R3
8IC #177760,R0
BEQ S
34 ASL ECCPAT
ROL ECCPAT.2
DEC RO
BNE 2
5%. MOV (R3),R0O
MOV ECCPAT ,R1
eIC ECCPAT,(R3)
eIC RO,R1
BIS R1,(R3).
CHP (SP),R3
BEQ 10%
MOV (R%),RO
MOV ECCPAT.2,R1
BIC ECCPAT.2,(R3)
BIC RO,R1
BIS R1,(R3)
10 187 (SP)e
MOV (SP).,R3
PTS pC

;ERROR BURST PATTERN

sWILL SHIFT INTO THIS

: SAVE

;ERROR BURST PQOS COUNT
;BUFFER ADDRESS

;WORD COUNT

+NOW BYTE COUNT

:CALCULATE END OF

: TRANSFER

:ggngRT TO BIT DISPLACEMENT
:COMPUTE BYTE DISPLACEMENT

;WORD DISPLACEMENT

;ERROR WITHIN TRANSFER?

+HIS = NO, RETURN

:COMPUTE BUFFER ADDRESS OF ERR
;: STARTING BIT DISPLAC IN WORD
:€Q = ON WORD BOUNDARY

;SHIFT PATTERN 1 BIT LEFT
;POOR MAN'S ASHC
;DECREMENT COUNT

sUNTIL DONE

:CORRECT FIRST WORD

:WITH XOR OF PATTERN
;POOR MAN'S XOR

;CHECK IF SECOND WORD IS
:IN BUFFER, EG= NO, ALL DONE
;ELSE DO NEXT WORD

;BUMP TEMP STORAGE

—— - . — ————— . ——— Vo——

SEQ 0030

F3

SEQ 0031

{ SECONDARY BOOT CODE AREA

éééDE:

.PAGE

'SBTTL BOOTSTRAP REVISION HISTORY

: REV DATE CHANGE

: 1.0 12-JUL-78 INITIAL ISSUE
11 17-NOV-78 MAKE COMPATABLE WITH XXOP-+
1.2 12 JuL-82 MODIFIED 10 SUIT VAX ASSEMBLER
1°3 29-MAR-83 WHEN TRYING TO B00T TO UNIT OTHER

THAN O AND UNIT O NOT ON BUSS, A
HALT AT 216 OCCURS
21-FEB-84 Ve CHANGE STACK AND MON SIZE

®e Bs B wa B G B4 B e

------------ - - - - - - - . - - - -

————— A A (LS it ——— . A ———————

.PAGE
.SBTTL

RBB00T:

RBCSA:
START:

STAR™]:

S$:
10¢:

20$:

704:

BOOTSTRAP
.NLIST CND

LIST MEB

RBCSI =0

REWC = 2

RBBA = 4

RBDA = 6

RB8CS2 = 10

RBDS = 12

RBOC = 34

BEGIN = 1046
MONCNT = 20000-256.
NOP

BR START

.WORD 6

HALT

.WORD 12

HALT

.BLKB 4

WORD 176700

NOP

BR START]

.BLKB 12

.WORD 0.0

.BLKB 24

MOV 260000, SP
MOV RBCSA,RS

MOV #23,(RS)

MOV RBCS2(RS),.R2
B8IC &177770,R2
MOV #40,RBCS2(RS)
MOV R2.RBCS2YRS)
BIT #100200, (RS)
BEQ 10¢

BM1 254

1578 RBDS(RS)

BPL 15%

MOV

MOV £#1000,RBBA(RS)
MOV #5003.1,RBDA(RS)
MOV #0,RBDC(RS)
MOV #71,(RS)

817 #100200, (RS)
BEQ 204

BP. 304

MOV (RS),R0O

MOV RBCS2(RS),R1
HALT

erR 5%

MOV RS.R1

JMP 3#BEGIN

.END

G3

:SK1P BOOT BLOCK

: START BOOT ROUTINE

; TRAP CATCHER
:RESERVED INSTRUCTION ERR
: TRAP CATCHER

;RJPO4 DEFAULT CSR ADDRESS

:SET UP STACK

:GET RBCS) ADDRESS

;00 PACK ACK TO SET Vv BIT
;GET UNIT NUMBER

;CLEAR CONTROLLER
;:SET UNIT NUMBER
;:READY?

:NO

;ERROR

;:DRIVE READY?

NOC

2-MONCNT ,RBWC(R5) ;SET UP WORD COUNT

;LOAD AT LOCATION 1000
;BLOCK & OF MONITOR
;CYL ¢

;00 READ COMMAND

;DONE OR ERROR?

;:NOT DONE

; DONE

;SAVE STATUS

; AND ANY ERRORS

;HALT ON ERROR

;:0K, TRY AGAIN

;PUT CSR ADDRESS IN DRIVER TABLE
;:START UP HIMON

- - —— v — ———

SEQ 0032

H3

SEG

Appendix: B Assembly and Linking Instructions

The Dr ver and Boot must be merged together and then
assmbled as a .MAC file. They should be maintained
separetly as shown in appendix A, that is they have

their own revision blocks. Assembling them together

helps to eliminate double references that would otherwise
occur. References to an absolute location by the BOOT code
must be done via an offset from BCODE:, which will be at
absolute zero dur 'ng the boot operation.

- - . L L - = - - T . T I N

Command file to create a XXDP V2 DB DRIVER
MCR MAC DB,DB/CRF/-SP=MACROM.MAC,DB.MAC

Set the address limits for the driver and create
a binary file

MCR TKB
DB/NOMM/NOHD/5Q, 08B/ -SP-DB
/

PAR=DUMMY:0:3200
STACK=0
/

$ WRITE SYSSOQUTPUT “ Now type TKBBIN <CR> , ~
$ WRITE SYS$OUTPUT " When prompted for the file name enter DB."
$ WRITE SYSSOUTPUT " will create a driver called DB.BIN .*

L R R R E I E R G S S,

13

Appendix; C - Driver Equates

; XXDP+ Version 2 Equate Definitions

; DEVICE COMMAND CODES

INITS =0 ; INITIALIZE DEVICE and BRING ON LINE
READS =1 : READ

WRITES = 2 i WRITE

RES$FN =3 ; RESTORE FUNCTION for XXDP-SM
RFS$FN = 100 ; REFORMAT SINGLE DENSITY

RFD$FN = 101 ; REFORMAT DOUBLE DENSITY

PRESTP = 200 ; TAPE - PREPARE

REWSTP = 201 i TAPE - REWIND

SPR$TP = 202 ; TAPE - REVERSE SPACE

WHOSTF = 203 ; TAPE - WRITE HEADER

RHD$STP = 204 ; TAPE - READ HEADER

SEF$TP = 206 ; TAPE - SKIP to EOF

WEF$IP = 207 ; TAPE - WRITE EOF

SET$TP = 210 ; TAPE - SKIP to EOT

STR4TP = 211 ; TAPE - RETURN STATUS CODE

DENSFN = 374 ; RETURN DENSITY (0 = LOW, 1 = HIGH)
CMPSFN - 37S ; COMPUT BLOCK # from SECTOR

WRTS$FN = 376 : WRITE absolute SECTOR

REDSFN = 377 ; READ sabsolute SECTOR

; DEVICE CODE BYTE

BBSUPS = 2 ; BAD BLOCK SUPPORT

NORENS = 4 : TAPE CANNOT RENAME FILE

NODIR$ 10 ;: NOT A DIRECTORY DEVICE

TAPEDS - 20 ; IS A TAPE DEVICE

REFDN$ = 40 ; SUPPORTS SINGLE/DOUBLE DENSITY FORMAT
MULUNS = 100 ; DRIVER SUPPORTS MULTIPLE UNITS/DRIVER

; DEVICE RETURNED STATUS BYTE

BoTTPS - 2 ; TAPE IS AT BOT
TMKTPS = 4 ; TAPE IS AT TAPE MARK
ECTTPS = 10 ; TAPE IS AT EOT

s s —t——— —— — - o S S———_et

SEQ 0034

J3

Appendix: D - Device Type Codes

The Device Type Code (DTC) is placed 'nto byte locat on 41 by tne
monitor everz time a binary file is run. This byte i1s then
e

designeted the “load medium indicator”. DT(C's are assigned as
follows:
DTC DEVICE Type XXOP+ Version Notes
0 rt or ACTII 1.3
1 ?ﬁgz (DECtape) 1.3
2 RKOS (disk)) 1.3
3 RPO2/RPO3 (disk) 1.3
4 TM10 (magtape) 1.3
S TAll (cassette) 1.3
6 TU16/TMO2 (magtape) 1.3 2.0
7 not used
10 RX01 (Flopgx disk) 1.3
11 RPO4/RS0S/RP06 (disk) 1.3 2.0
12 RSQ3/RS04 (disk) 1.3
13 RKO6/RKO7 (disk) 1.3 2.0
14 RLO1/02 (disk) 1.3 2.0
15 RX02 (disk) 1.3 2.0
16 RMO2/RMO3 (disk) 1.3 2.0
17 TUS8 (cassette) 1.3 2.0
20 TUS8/PDT11 (cassette) 1.3
21 7504 (tape) 1.3 2.0
22 TM78 (tape) 1.3
23 UDA (disk MSCP) 1.3 2.0 1
24 TR79 (tape) 1.3
25 RD/RXS0O (disk) 1.3 2.0 i
26 RC2S (disk) 1.3 2.0 1
27 TKS50 (tape MSCP TMSCP) 1.3 2.0
NOTES

1. These are MSCP class devices end under XXDP V2 are
handled by one driver which uses DTIC = 23

SEQ 0035

